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A system designer faces several challenges when specifying security for

distributed computing environments or migrating systems to a new execu-

tion platform. Business stakeholders impose constraints due to cost, time-

to-market requirements, productivity impact, customer satisfaction con-

cerns, and the like. And users exercise power at the desktop over comput-

ing resources and data availability. So, a system designer needs to

understand requirements regarding protected resources (e.g., data), confi-

dentiality, and integrity. And, a designer needs to predict the effect that

security measures will have on other runtime quality attributes such as

resource consumption, availability, and real-time performance.

After all, the resource costs associated with security can easily overload a

system. Security processing can increase usage of processing power, band-

width, battery (in embedded systems), and other resources. Despite that,

security is often studied only in isolation and late in the process. However,

using model-based engineering (MBE) tools, the Carnegie Mellon® soft-

ware Engineering Institute (SEI) has developed analytical techniques to

model and validate security according to flow-based approaches and to

represent standard security protocols such as Bell-LaPadula [Bell and LaP-

adula 1973, 1976], Chinese wall [Brewer 1989; Lin 1989], role-based

access control [Ferraiolo 1992], Biba model [Biba 1977] for enforcing

confidentiality and integrity. 
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The Bell-LaPadula model has been successfully used as a foundation to spec-

ify and analyze multi-level security (MLS). MLS captures the notion that a

system processes data items classified at multiple security levels. The infor-

mation flow security policy must thus prevent high-level classified data items

not to be compromised into low-level objects (i.e., unintentional lowering of

required security clearance.)

Security analysis using MBE tools allows software validation by identifying

data elements to be protected, components that should be allowed access to

those elements, and appropriate communications channels. This analysis per-

mits the designer to enforce security at the minimum level required, use san-

itization, and map software architecture to hardware that supports the

required security levels—to take advantage, for instance, of the multiple

independent levels of security (MILS) paradigm.

PREVENT SYSTEM INTEGRATION PROBLEMS AND SIMPLIFY 
LIFE-CYCLE SUPPORT—AN MBE APPROACH TO SECURITY

Modeling of system quality attributes is often done—when it is done—with

low fidelity software models and disjointed architectural specifications by

various engineers using their own specialized notations. These models are

typically not maintained or documented throughout the life cycle, making it

difficult to predict the impact of change on attributes that cut across system

functionality. The unanticipated effects of design approaches or changes are

discovered only late in the life cycle, when they are much more expensive to

resolve. Analysis of a system architecture model offers a better way to predict

the behavior of the integrated components when assembled into the system. 

The Architecture Analysis & Design Language (AADL) is a MBE tool that

allows analysis 

• using a single architecture model to evaluate multiple quality attributes 

• early and often during system design or when upgrading existing system
architecture

• at different architecture refinement levels as information becomes avail-
able

• along diverse architectural aspects such as behavior and throughput

Integration is a major cost and risk in complex systems [NIST 2002]. In a

study conducted by NIST, it was observed that 70% of all defects are intro-

duced prior to implementation, i.e., requirements phase and system and soft-

ware design phase. Yet, only 3.5% of the defects were detected in these

phases; 50.5% of the faults were detected in the integration phase. The defect

removal cost ranged from 5x to 30x relative to the cost of removing the defect

in the phase of introduction (if it had been detected). Other sources are report-

ing similar estimates, and while the numbers vary, the conclusions do not.

Key points:

• Security is often studied in 
isolation and late in the 
development process.

• Security comes with a cost 
in terms of resource usage 
and bandwidth.

• MBE and the building of 
architectural models facili-
tate quantitative analysis 
of security and other 
dependability attributes. 

• System designers can 
employ MBE techniques 
on architectural models to 
predict runtime behavior 
early in the development 
life cycle.

• Validation using MBE tools 
can be conducted at multi-
ple layers and different 
levels of fidelity.
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System understanding is a major cost driver during system maintenance.

Model-based engineering is a proactive measure to determine the viability of

a system architecture to enforce security. By providing a security validation

framework using MBE and AADL, organizations benefit from multiple uses

out of single architectural model annotated with additional properties captur-

ing non-functional requirements and parameters used for validation, prevent-

ing many system integration problems and simplify the life-cycle support.

IMPACT AND TRADEOFF ANALYSIS

Security is an architectural concern that intrinsically crosscuts through all

levels of the system (application, middleware, operating systems, and hard-

ware), requiring intra- and inter-level validation of security. Security also has

immediate effects on the runtime behavior of the system, specifically other

dependability attributes. 

First, we need to enforce inter-level and intra-level security when designing

an architecture and building the system. Fig. 1 depicts various system levels.

For the purpose of this example, we focus on validation of security privileges

against confidentiality requirements and thus assume authentication and

other necessary security services are enforced. Ultimately, we want to ensure

that the software applications do not compromise the confidentiality of the

secure information they are exchanging. Consequentially, software applica-

tions need to execute on top of a secure operating system, mapped to a pro-

tected and secured hardware memory space, and communicate over a secure

communication channel. Thus, if the data is confidential, then every layer

needs have a clearance of at least that level. While the example is coarse in

scale, it demonstrates that security needs to be enforced at every architectural

level to ensure secure communication between the applications. Said differ-

ently, we must both inter-level and intra-level security. 

Key point: 

• Architectural decisions 
taken to assure confidenti-
ality and data integrity cut 
across software, hard-
ware, and their connec-
tions. 

Fig. 1:  System perspective on security
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Second, security comes with a cost. Encryption, authentication, security and

protection mechanisms add increased bandwidth both in terms of CPU, net-

work, and memory). 

Indeed, these increases further affect temporal behavior of the system (worst-

case execution time, response time, schedulability, and end-to-end latency) as

well as power consumption (especially important in battery-driven, or lim-

ited-life time devices (e.g., sensor networks or portable communication

devices). The system designer is facing the challenge of trading these quality

attributes against each other and security can thus not be considered in isola-

tion. This is a particular concern for embedded and real-time systems, which

are characterized to operate under significant resource constraints while

ensuring high levels of dependability (as reliability, availability, or safety) as

well as security. Said differently, security is interlinked with the other non-

functional behaviors such as predictability/timeliness, resource consumption,

and inadvertently affect reliability and availability. (Some of these dependen-

cies are depicted in Fig. 2 below).

It is easy to see the value of a single architectural model by considering the

scenario with a number of independently created models that is supposed to

reflect the same system architecture (consistency across models and system) 

It follows that any change to modeled architecture during its life time requires

each of these models to be updated and validated that it correctly reflects the

actual system architecture. Hence, it is difficult to consistently reflect any

architectural changes in one analysis dimension in other dimensions, due to

interaction among the dependability attributes. It becomes important, from

the perspectives of economics, system correctness, system quality, and devel-

opment life cycle) to integrate the different analysis dimensions into a single

architecture model. A single-source architecture model that is annotated with

Fig. 2:  A change in security level will have impact on other non-functional 
attributes
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analysis-specific information of multiple types can drive model-based engi-

neering by generating the analysis-specific models from this annotated

model. This allows changes to the architecture to be reflected in the various

analysis models with little effort by regenerating them from the architecture

model. This approach also allows us to evaluate the impact across multiple

analysis dimensions, allowing the designer to conduct adequate tradeoff anal-

ysis, evaluate different architectural variations prior to system realization,

thus gaining confidence in the architectural design. 

Models also serve a purpose in post-development phases, where models can

be used to evaluate effects of reconfiguration and system revisions. A model-

based approach allows validation at different levels (e.g., validation of confi-

dentiality and integrity, validation of architectural patterns that enforce secu-

rity, and consistency validation of architectural assumptions).

.

AN MBE APPROACH TO VALIDATING CONFIDENTIALITY

Confidentiality addresses concerns that sensitive data should only be dis-

closed to or accessed by authorized users (i.e., enforcing prevention of unau-

thorized disclosure of information). Data integrity is closely related as it

concerns prevention of unauthorized modifications of data. The security

framework, utilizing AADL and OSATE features: 

• representation of confidentiality requirements of resources (i.e., objects);

• representation and generation of security clearance/privileges of subjects
operating on the objects;

• representation of an access matrix, specifying allowed access operations of
subjects on objects to support integrity

Key Point:

• An MBE approach lets the 
system designer see 
security considerations 
holistically—through the 
virtual integration of soft-
ware and hardware.
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To model and validate the confidentiality of a system, we distinguish between

general and application-dependent validation. General validation of confi-

dentiality is the process of ensuring that a modeled system conforms to a set

of common recommendations or design guidelines, expressed as a set of con-

ditions that support system confidentiality independent of a specific reason-

ing framework for security. Those conditions should hold in the general case;

as a result, they are necessary but not sufficient (i.e., satisfying the conditions

indicates the system is viable for enforcing confidentiality). General valida-

tion of confidentiality assumes that subjects and objects are assigned a secu-

rity level, that is the minimum representation to enforce what are commonly

referred to as the basic confidentiality and need-to-know principles. 

Application-specific validation refers to validating the system given detailed

confidentiality requirements and a specific reasoning-based security frame-

work. The following types of security validation and analysis, using OSATE,

are currently available.

• Basic confidentiality principle—access should only be granted if given
the appropriate security clearance.

• Need-to-know principle—access should only be granted access to a
resource if there is a need. For example, a person having top-security doc-
ument clearance should not necessarily be allowed access to all documents
but only to those related to his or her function in a project. In our notation,
this is captured in the composite security label consisting of class and cat-
egory.

• Controlled sanitization—stipulates that lowering the security level of an
object or subject should only be authorized and performed by a privileged
subject.

• Non-alteration of object’s security requirements—a subject using an
object as input should not alter the security level of the object, even if the
object is updated as an output from the subject. The rationale for this con-
dition is that a subject can have a security clearance that exceeds the max-
imum required security level of an object. Increasing the security level of
the object beyond its range implies that security requirements do not align
between the subjects that operate on a dependent object. Thus, a subject
with less security clearance than an object cannot continue its operation as
expected.

• Hierarchical condition—ensures that (i) a component has a security level
that is the maximum of the security levels of its subcomponents and (ii) all
connections are checked to determine whether the source component of a
connection declaration has a security level that is the same or lower than
that of the destination component. 

The principle of least privilege has been identified as important for meeting

integrity objectives; it requires that a user (subject) be given no more privi-

lege than necessary to perform a job. This principle includes identifying what

the subject’s job requires and restricting the subject’s ability by granting the

minimum set of privileges required. With the object’s security requirements

specified in an AADL model, the least amount of privileges for the subjects

Key points:

• The OSATE security plug-
in analyzes and validates 
architectural models for 
confidentiality and con-
trolled sanitization. among 
other aspects. New analy-
sis techniques can also be 
added by adopters.

• MBE tools can be used to 
set and ensure that the 
least amount of privilege is 
enforced throughout the 
system.
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can be generated in a straightforward manner by analyzing the security levels

of all objects accessed by the subject. Given that the subjects’ privileges are

specified, a mismatch between the least privilege and what has been specified

results in two possible cases:

1. The assigned privilege is insufficient—that is, it does not dominate the

required least privilege (the subject has been given incorrect privileges, the

object has been wrongly associated with a subject, or there is an unauthor-

ized access).

2. The assigned privilege exceeds the minimum privilege, which either is

unnecessary or a consequence of that the subject might be associated with

other objects that have not yet been described in the model.

The versatile concept of subjects and objects, a notion introduced by Bell and

LaPadula, where subjects operate on objects by permissible access operations

(read, execute, append, write) enables us to model and validate security at

both the software and hardware levels. At the software level we can view pro-

cesses, threads, and software components as subjects and data objects are

objects. 

Determining the viability of a system given confidentiality requirements of

data objects and security clearance by users, one can see the validation must

include (i) validation of the software architecture followed by (ii) validation

of the system architecture where the software architecture is mapped to hard-

ware components. By mapping the entities of a software architecture (e.g.,

processes, threads, and partitions) to a hardware architecture (consisting of,

for example, CPUs, communication channels, and memory) and the like

enables us further to ensure that the hardware architecture supports required

security levels (see Figs. 3 and 4). 

Consider the scenario of two communicating processes, both requiring a high

level of security as because the data objects requires secret clearance. Fur-

thermore, the system platform in this scenario consists of a set of CPUs with

hardware support for various algorithms that encrypt messages before net-

work transmission. By modeling the system, we can represent and validate

that processes and threads (now considered to be objects) can be executed

(access mode) on CPUs (subjects) with adequate encryption support. Further-

more, we can validate that CPUs (objects) communicate data (access modes

of writing and reading) over appropriately secured communication channels.

In a similar fashion, we can enforce design philosophies saying that only pro-

cesses of the same security level are allowed to co-exist within the same CPU

or partition or that they can write to a secured memory.
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VALIDATING MILS ARCHITECTURES

MILS architecture represents one approach to architecting secure systems,

and we are going to use it as an example of architectural validation. The

MILS approach is to modularize an architecture by practicing “divide and

conquer,” and it uses two mechanisms for this purpose:

• First, the MILS architecture utilizes partitions to isolate processes, and
each partition defines a collection of data objects, code, and system
resources. Each partition can thus be evaluated separately (AADL supports
the modeling of partitions and virtual processors). 

Fig. 4:  Architectural components to which security levels and requirements 
can be connected

Fig. 3:  Specification of security levels

Key points:

• The MBE approach allows 
designers to assure that 
software applications exe-
cute on top of a secure 
operating system, map to 
a protected and secured 
hardware memory space, 
and communicate over 
secure communication 
channels. 

• Analysis of security mea-
sures can be done early 
and throughout the devel-
opment life cycle using 
architectural models and 
MBE tools.
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• Second, each partition is divided into the following layers (each layer is
responsible for its own security domain and nothing else): 

•Separation Kernel (SK), which is responsible for enforcing data isola-
tion, control of information flow, periods processing, and damage lim-
itation

•Middleware Service layer. 

•Application layer

A MILS architecture supports MLS, and it is argued that the reduced com-

plexity of the system, by the use of partitioning and separation, is conducive

to improved efficiency of certification. The approach is to separate security

mechanisms and concerns into the following type of components, classified

based on the way they process data: 

• SLS—Single-Level Secure component; only processes data at one security
level

• MSLS—Multiple Single-Level Secure component; processes data at mul-
tiple levels, but maintains separations between classes of data

• MLS—Multi-Level Secure component; processes data at multiple levels
simultaneously 

Well-designed MILS system separates functions into separate partitions

(location awareness). Thus, the MILS architecture builds on partitioning as

one key concept to enforce damage limitation. Virtual machines have been

recognized as a key concept for providing robustness through fault contain-

ment, and this mechanism provides time and space partitioning to isolate

application components and subsystems from affecting each other due to

sharing of resources. This architecture pattern can be found in the ARINC

653 standard [ARINC 653].

The validation concerns most critical to MILS and where the MBE approach

is most conducive are: 

• Validating structural rigidity of architecture, which includes enforcement
of legal architectural refinement patterns of a security component into
SLS, MSL, and MSLS. This decomposition can be applied to components,
connectors, and ports. A component can be divided into parts using the
product, cascade, or feedback decomposition patterns [McLean 1994; Zak-
inthinos 1996]. Confidence in validation of an architecture increases with
the fidelity of the modeling; MBE analysis can be applied at different
architectural refinement levels. In a MILS context, this corresponds to the
level of decomposition (i.e., confidence) is achieved if (i) refinement pat-
terns ensure that security is enforced, recognizing intra- and inter-level
security requirements, and (ii) the architecture enforces the refinement pat-
terns and thus provide structural rigidity.

• Architectural modeling and validation of assumptions underlying MILS,
which include assumptions with respect to damage limitation and parti-
tioning in MILS, and validation of separation in time (and space). AADL
supports the modeling of partitions with virtual processors.

Key point:

• An MBE approach is con-
ducive to the validation 
concerns most significant 
to MILS.



The Software Engineering Institute (SEI) is a federally funded research and 
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• Validating requirements specific to the NEAT characteristics and the com-
munication system. MILS requires that its SK and the trusted components
of Middleware Services are implemented so that the security capabilities
enforce what is commonly referred to as the NEAT characteristics: 

• Non-bypassable—security functions cannot be circumvented.

• Evaluatable—the size and complexity of the security functions allow
them to be verified and evaluated. 

• Always invoked—security functions are invoked each and every time
without exceptions. The reference monitor concept can be used by the
system architecture to enforce this for critical applications.

• Tamperproof—subversive code cannot alter the function of the security
functions by exhausting resources, overrunning buffers, or other forms
of making the security software fail. 

These requirements include strong identity among nodes within an enclave (a

group of MILS nodes), separation of levels/communities of interest (need

cryptographic separation), secure configuration of all nodes in an enclave,

secure loading (signed partition images, secure clock synchronization), sup-

pression of covert channels (bandwidth provisioning and partitioning) and

network resources (bandwidth, hardware resources, buffers).
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SUMMARY

Model-based engineering and the building of architectural models, facilitate

quantitative analysis of security and other dependability attributes. Validation

can be conducted at multiple layers and different levels of fidelity. Confidence

in security validation increases with the level of decomposition, given that (i)

refinement patterns ensure that security is enforced, recognizing intra- and

inter-level security requirements, and (ii) the architecture enforces the refine-

ment patterns and thus provides structural rigidity. 

• Evaluation of an architecture configuration with respect to impact on other
non-functional attributes—e.g., to quantify increases in power consump-
tion, bandwidth usage (network, bus, processor), and performance (latency,
schedulability). 

• Validation of architectural requirements necessary to enforce architectural
requirements. For example, the MILS approach requires the architecture
enforces damage limitation (containment of faults through partitioning) and
separation in time and space. 

• Reduction of the effort necessary for recertification efforts in the event of
architectural changes.

The overall objective of a secure system implies that security clearances are

given conservatively (as opposed to generously). To this end, we can analyze

models to derive the minimum security clearance on components in the model.

Or to put it differently, we can use the notion of subjects and objects to deter-

mine the minimum security clearance for a subject based on the requirements

of the objects being accessed by the specific subject. 

By also pointing out differences between actual security clearances and the

minimum security clearance required, a system designer can evaluate how

effective and tight security is. Finally, by providing mechanisms to ensure that

sanitization is conducted within allowed boundaries, the designer is allowed

to analyze and trace these relatively more threatening security risks, as since

sanitizing actions are permitted exemptions of security criteria and rules, and

as such should be minimized in the system. 

Case Study:

Security Validation of FPGAs

Rockwell-Collins used the 
AADL technology and secu-
rity plug-in tool developed by 
the SEI to enable the high-
assurance handling of data 
from multiple sensors hav-
ing varying levels of security, 
such as airborne imagery 
field programmable gate 
array (FPGA). 

Typically, you use a high-
assurance processor to 
securely tag variable input. 
An FPGA is powerful and 
fast. The rationale for Rock-
well-Collins to deploy 
FPGAs is that it is deemed 
easier to develop applica-
tions on an FPGA, and it 
also reduces the cost and 
time to market. The FPGA 
can further be repro-
grammed at runtime (e.g., to 
fix bugs), which can lower 
maintenance-engineering 
costs.

Because FPGA behavior is 
more complex, architecture-
level definition and analysis 
are needed. Rockwell-Col-
lins developed architectural 
models of the FPGA using 
AADL and used the OSATE 
security analysis tool to vali-
date security and demon-
strate the high-assurance 
potential of FPGAs.
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